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ABSTRACT
Bathymetric highs on the ocean floor ultimately sink into highly seismic subduction zones, 

raising vigorous debates on their potential to trigger or arrest large earthquakes (Mw > 7.5). 
Many geophysical and seismological studies addressing this problem meet penetration and/or 
resolution issues and deal with only the most recent earthquakes. We herein present the missing 
piece of the puzzle with the time-integrated field and petrographic record of a unique, almost 
intact subducted seamount cropping out along a fossil subduction interface. We document 
seamount buildup and subduction down to ~30 km, and we show that this seamount did not 
behave as a large earthquake asperity and may have acted as a barrier.

INTRODUCTION
The bathymetric roughness of seamounts 

and seamount chains entering subduction zones 
(Hillier and Watts, 2007; Bassett and Watts, 2015) 
has long been suspected to impact the geometry 
and seismic coupling of the subduction interface 
(Cloos and Shreve, 1996; Scholz and Small, 
1997; Agard et al., 2018). Constraining the size 
and/or location of megathrust ruptures is critical 
for assessing earthquake hazard, and it is there-
fore of crucial importance to understand whether 
seamounts can limit large earthquake rupture 
propagation (acting as barriers) or may gener-
ate large earthquakes (acting as asperities; Cloos, 
1992; Mochizuki et al., 2008; Wang and Bilek, 
2011; Geersen et al., 2015; Saffer and Wallace, 
2015). Despite spectacular geophysical imag-
ing at the trench (Ranero and von Huene, 2000), 
seamounts are poorly imaged once subducted 
beyond ~15 km depth (Kodaira et al., 2000; Singh 
et al., 2011; Saffer and Wallace, 2015), and their 
internal deformation is thus beyond reach (Park 
et al., 1999). Fossil exhumed examples are scarce 
(MacPherson, 1983), yet they are of utmost inter-
est because they possibly preserve millions of 
years of seamount evolution on the ocean floor 
and within the subduction zone.

AN EXCEPTIONALLY PRESERVED 
FOSSIL SEAMOUNT

Here, we report the discovery of a unique, 
fully exposed subducted seamount, namely, 
the Siah Kuh (SK) massif, and we present its 

structure and evolution, which we detailed 
through extensive field and petrological data. 
This massif crops out within ophiolite fragments 
of the Neotethys Ocean subducted beneath Eur-
asia (Agard et al., 2011) in the easternmost por-
tion of the Zagros Mountains, next to and below 
oceanic blueschists metamorphosed during the 
Late Cretaceous (Angiboust et al., 2016). This 
massif rises from Quaternary sediment infill as 
an 18 × 12-km-wide and ≥1.5-km-high feature 
(Figs. 1A and 1B), and it is composed of two 
subunits separated by tectonic contacts (Figs. 
1C and 1D):

(1) An ~15 × 12 km oval-shaped unit 
(unit A) to the southwest is composed of up 
to 3 km of basaltic lava flows and pillow lavas 
intercalated with pillow breccia. Rhyodacitic 
subvolcanic rocks intruding this basaltic core 
are associated with lavas erupted on top of the 
basalts. Basalts and felsic lavas are overlain 
by a ≤500-m-thick Late Cretaceous sedimen-
tary sequence, fully exposed on the southern 
flank of the unit. The base of this sequence 
consists of a massive limestone cap (10–50 m 
thick), of reef to lagoon affinity, with recrys-
tallized fossil fragments like urchin spines, 
foraminifera, and gastropods. The top of the 
sequence is a variably thick (~100–500 m), 
mostly detrital, deepening-up sedimen-
tary sequence of tuffaceous sandstone, red 
clay, pelagic limestone, and olistostromic 
debris flows. Pillow lavas (up to 1 km thick) 
emplaced conformably on top of these sedi-
ments indicate resumption of volcanic activ-
ity after sedimentation (Fig. 1).

(2) The smaller crescent-shaped unit to the 
northeast of SK (unit B) consists of, from bot-
tom to top, serpentinites with meter- to deca-
meter-large gabbroic pods and plagiogranites, a 
layer of massive gabbro overlain by rhyodacitic 
lavas, and finally kilometer-thick basaltic lavas 
without significant sedimentary cover.

While Unit B resembles classic ocean floor 
lithostratigraphy, the size and circular shape, 
amount of volcanism, shallow reef limestone 
cap—and overlying high-energy deposits (olis-
tostromic sediments, debris flow)—indicate that 
unit A is a bathymetric anomaly on the seafloor, 
i.e., a seamount. The deepening-up sedimen-
tary sequence hints at isostatic reequilibration of 
the oceanic lithosphere after the first magmatic 
event and/or seafloor subsidence.

Unit B was thrust southwestward onto unit A 
via a high-angle fault rooted in the lowermost, 
basal serpentinite horizon (Fig. 1D), suggesting 
initial strain localization beneath the oceanic 
Moho. Associated fault striations in gabbros 
strike N50° on average, parallel to the con-
vergence direction during subduction beneath 
Eurasia (Agard et al., 2011). Smaller thrust 
faults of similar orientation rooted in sheared 
sediments (mainly tuffaceous sandstone and 
pelagic limestone) cut across the northeastern 
part of unit A and delineate tectonic subunits 
(A1′–4; Fig. 1C). Small serpentinite bodies are 
pinched inside these faults, and basalts located 
in their vicinity lack significant deformation. 
The Oligocene Zagros collision (Agard et al., 
2011) was responsible for the final arching of 
the whole SK massif into a south-to-southeast-
vergent anticline (with locally tight refolded 
limbs; Fig. 1).

CONDITIONS OF BURIAL IN 
A SUBDUCTION ZONE

Former subduction of the SK seamount is 
indicated by a high-pressure–low-temperature 
(HP-LT) metamorphic imprint that postdates sea-
floor hydrothermal alteration and contact meta-
morphism near felsic intrusions. This tectonic 
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event is best expressed at the northeastern tip of 
the massif near the major shear zones bounding 
units A and B (Fig. 1). It consists of (1) sodium-
bearing amphibole crystallization in gabbro, 
(2) numerous quartz-lawsonite veins in basalts, 
and (3) metamorphic aragonite veins in carbon-
ates and basalts. These minerals are diagnostic of 
low-temperature subduction zone blueschists and 
define a minimum pressure of ~0.5 GPa, which, 
if lithostatic, corresponds to a minimum depth 
of ~20 km. The absence of jadeite + quartz in 
basalt, and the absence of antigorite + brucite in 
serpentinite argue for maximum pressures and 
temperatures of 0.9 GPa and 300 °C (~35 km). 

Raman spectroscopy on organic matter–bear-
ing metasediments from the middle part of the 
subducted seamount yielded an average tempera-
ture of 225 ± 30 °C (see the GSA Data Reposi-
tory1). Considering typical subduction gradients 
(<10 °C/km in mature subduction zones) and 
the ~7.5 °C/km inferred from lawsonite-ompha-
cite blueschists formed early within the same 

subduction zone (Angiboust et al., 2016), pres-
sures of 0.6–0.9 GPa are estimated at 225 °C. 
The paleosubduction depths of the SK seamount 
were thus around 25–35 km (Fig. 2A), i.e., within 
the seismogenic zone, where most large earth-
quakes occur (Oleskevich et al., 1999; Gao and 
Wang, 2014).

The original position of SK along the sub-
duction zone is shown in Figure 3. The higher 
concentration of index HP-LT minerals in the 
northeastern part of SK (Fig. 1C) suggests 
greater burial depths, consistent with north-
eastward subduction beneath Eurasia during 
Cretaceous and Paleocene times. Depth and 
temperature differences expected between the 
front and rear of an ~20-km-long seamount on 
a 20°-dipping slab are ~40 °C and 0.2 GPa, or 
7 km depth. Importantly, only a minor part of 
the recorded 0.6–0.9 GPa may correspond to 
stress accumulation, which was estimated by 
numerical models with strain weakening (Ruh 
et al., 2017) to be ≤0.12 GPa ahead of a subduct-
ing seamount for almost dynamic fluid pressure 
(λ = 0.9). There is indeed strong argument that 
very high fluid pressures (λ> 0.9–0.95) may pre-
vail along the plate interface in the seismogenic 
zone (as can be inferred from the extremely low 
effective friction coefficients—typically 0.03; 
Gao and Wang, 2014), particularly in and at the 
front of subducting seamounts or ridges (Bell 
et al., 2010; Kato et al., 2010). Hydraulic brec-
ciation, metamorphic vein formation (Fig. 2B), 
and chlorite-rich shear bands in metagabbro 
at peak pressure in SK further strengthen this 
conclusion. A minor contribution of tectonic 
overpressure-underpressure to pressure esti-
mates would impact the inferred depth differ-
ence between the front and rear of the seamount, 
but it would not explain the HP-LT metamorphic 
record alone.

The SK seamount preserves pristine sub-
duction-related deformation, as demonstrated 
by the spatial coincidence between faults and 
HP-LT metamorphism (Fig. 1C). Major dis-
placements are localized in serpentinite (with 
an offset of several kilometers between units A 
and B; Fig. 1D) and in sediments (hectometer- to 
kilometer-scale offsets). Although the 25–35 km 
depth range is prone to brittle-ductile switches 
(Fagereng and den Hartog, 2017), the fact 
that deformation is mostly rooted in plasti-
cally deforming materials such as serpentinite 
and sediments suggests a dominantly ductile 
(creep) rather than brittle (potentially seismic) 
mechanical behavior. Long-term elevated pore-
fluid pressure in these materials, as a result of 
metamorphic dehydration reactions and/or a 
sealed plate interface (Audet et al., 2009; Wal-
lace et al., 2012; seamount-related—Bell et al., 
2010) would favor ductile creep (as observed 
by Angiboust et al., 2016) and/or recurring 
brittle failure with earthquakes of only small 
magnitude.

A (20 km) B

Figure 1. Geological overview of the Siah Kuh (SK) seamount. A: Satellite image of SK seamount 
showing different units. B: Photograph showing reef limestone capping basalts of seamount 
and later, rejuvenated volcanic activity. C: Geological map of SK seamount; black dots are 
sampling locations; inset is a large-scale map of Iran locating SK seamount. Lws-Omp—law-
sonite-omphacite. D: Present-day section across SK seamount; successive locations of the 
plate interface (numbered 1–3) are highlighted; inset below: schematic restoration showing 
initial seamount architecture.

1GSA Data Repository item 2019139, methods, 
detailed description of the pseudotachylyte, and Tables 
DR1 and DR2 (localization of metamorphic samples 
and representative chemical analyses), is available 
online at http://​www​.geosociety​.org​/datarepository​
/2019/, or on request from editing@​geosociety​.org.
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NO RECORD OF LARGE-MAGNITUDE 
EARTHQUAKES

Large-magnitude fossil earthquakes are 
commonly inferred from the presence of 
pseudotachylytes, i.e., glassy fault rocks formed 
by highly localized frictional heating during 
earthquakes (Austrheim and Andersen, 2004; 
Di Toro et al., 2005) on large, kilometer-scale 
faults with significant amounts of slip (≥meter 
scale). Extensive field investigations of the 
SK seamount revealed only one ~10-m-long 
pseudotachylyte (Fig. 2C) formed during sub-
duction in gabbros of unit B (as shown by 
glaucophane crystallized from glass; see the 

Data Repository), pointing to seismic events 
with maximum centimeter- to decimeter-scale 
slip (i.e., Mw < ~2–3). This has important con-
sequences for the seismic behavior of SK, as it 
shows that no major earthquake went through 
or was generated in the seamount during sub-
duction. This demonstrates that the SK sea-
mount did not host very large seismic rupture 
(Mochizuki et al., 2008; Wang and Bilek, 2011).

Whether the SK seamount behaved as a bar-
rier is more difficult to assess, because mega
thrust earthquakes could tentatively have propa-
gated outside the seamount without damaging it. 
Above the contact, however, no pseudotachylytes 

or damage were observed in the upper plate 
(Fig. 1). The contact below, where slicing and 
detachment of the seamount from the subduct-
ing slab occurred prior to exhumation (Figs. 
1D and 3), is unfortunately not exposed. With a 
plate convergence rate of ~5 cm/yr (Agard et al., 
2011) and a 20-km-long seamount, detachment 
of the SK seamount must have lasted ~400 k.y. 
(only a fraction of a million years). This could 
in principle have been accommodated by creep 
or by ~2000 very large earthquakes if one Mw 
~8 earthquake with ~1–10 m slip occurred every 
200 yr (as along Chile today). Yet, no major sub-
duction earthquake affected SK, pointing again 
to deformation mostly by creep. We therefore 
propose (Fig. 3) that the SK seamount acted as 
a barrier to earthquake propagation on the sub-
duction interface, possibly controlling the seg-
mentation of seismic coupling (Geersen et al., 
2015; Métois et al., 2016). Other examples of 
fossil and actively subducted seamounts should 
be sought to assess whether their size or struc-
ture may control their behavior as asperities 
and/or barriers.

The presence of sediments is commonly con-
sidered to smooth contact zones, to facilitate rup-
ture propagation (Scholl et al., 2015; Shillington 
et al., 2015). In this exceptionally well-preserved 
seamount, the dearth of weak sediments, as, in 
fact, in most seamounts (Kodaira et al., 2000; 
Bassett and Watts, 2015), may have prevented 
the nucleation of large earthquakes. The pres-
ence of soft material (limited sediment intercala-
tions—frequent in seamounts—and serpentinite) 
was nevertheless essential in promoting strain 
localization along the major contacts (Fig. 1C). 
The scarcity of exhumed seamounts in the geo-
logical record (MacPherson, 1983) indicates that 
effective decapitation of seamounts during sub-
duction is generally impeded. We suggest that 
specific structural heterogeneities in the basal 
oceanic crust or within the seamount and/or 
strain localization into serpentinite (Ruh et al., 
2015; Guillot et al., 2015), beneath the Moho 
(Fig. 3), are essential to prevent seamounts from 
sinking into the mantle.
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