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Oblique rifting at oceanic ridges: Relationship between spreading
and stretching directions from earthquake focal mechanisms
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Abstract

The relationship between spreading and stretching directions is investigated at oblique-spreading oceanic ridges using earthquake focal
mechanisms. The stretching direction at ridge axes corresponds to the direction of the greatest principal strain 31 taken as the mean trend of
the seismic T-axes of extensional earthquake focal mechanisms. It is compared with the spreading direction provided by global plate-motion
models. We find that the stretching direction trends approximately halfway between the spreading direction and the normal to the ridge trend,
a result in line with analogue experiments of oblique rifting. This result is satisfactorily accounted for with an analytical model of oblique rifting,
for which the direction of 31 is calculated with respect to rifting obliquity for different amounts of stretching using continuum mechanics. For
low stretching factors, typical of incremental seismic deformations, 31 obliquity is two times lower than rifting obliquity. For higher stretching
factors, the stretching and spreading directions become parallel.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Determining the direction of relative motion between two
rigid plates on either side of a deformation zone can be achieved
by analysing the strain within the deformation zone. In oblique
deformation settings, i.e., when the direction of displacement
between the two rigid plates is oblique to the deformation
zone, the direction of relative motion is generally not parallel
to the principal strain directions (e.g., Sanderson and Marchini,
1984; Tikoff and Teyssier, 1994; Dewey et al., 1998; Fossen and
Tikoff, 1998). This result is for example the case at the axial rifts
of oblique-spreading mid-oceanic ridges (Taylor et al., 1994;
Tuckwell et al., 1996), which are investigated in this paper.

The process of oblique divergence between two tectonic
plates often involves the formation of an oblique rift. Oblique
rifting occurs in the continental domain (e.g. Lake Baikal;
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Petit et al., 1996) as well as in the oceanic domain at the
axis of slow-spreading ridges (e.g., Southwest Indian Ridge).
The faulting and strain patterns associated with oblique rifting
have been investigated for both oceanic and continental rifts
(Dauteuil and Brun, 1993, 1996; Murton and Parson, 1993;
Shaw and Lin, 1993; Taylor et al., 1994; Applegate and
Shor, 1994; Carbotte and Macdonald, 1994; McAllister
et al., 1995; Dauteuil et al., 2001; Acocella and Korme,
2002; Clifton and Schlische, 2003; Fournier et al., 2004a),
and by means of experimental (Withjack and Jamison, 1986;
Tron and Brun, 1991; Dauteuil and Brun, 1993; McClay and
White, 1995; Bonini et al., 1997; Clifton et al., 2000; Mart
and Dauteuil, 2000; Clifton and Schlische, 2001; Venkat-Ram-
ani and Tikoff, 2002), analytical (Elliott, 1972; Sanderson and
Marchini, 1984; McCoss, 1986; Withjack and Jamison, 1986;
Fossen and Tikoff, 1993; Tikoff and Fossen, 1993, 1998;
Krantz, 1995; Tuckwell et al., 1996; Abelson and Agnon,
1997), and numerical (Tuckwell et al., 1998) models. These
studies show that oblique rifting is accommodated by both
normal and strike-slip faults, whose relative proportions and
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orientations depend on rifting obliquity defined as the angle
between the normal to the rift trend and the direction of dis-
placement. Oblique rifting typically produces en echelon fault
patterns that are not perpendicular to the direction of relative
motion.

Withjack and Jamison (1986) demonstrated, with analogue
clay models marked at their surface by deformed circles, that
three structural directions are linked in the process of oblique
rifting: the rift trend (or its perpendicular), the direction of rel-
ative motion between the two plates, and the trend of the great-
est principal strain axis 31 of the finite strain ellipsoid (Fig. 1).
When the direction of relative motion is perpendicular to the
rift trend, the rift formation involves pure shear extension
without simple shear and the deformation is accommodated by
dip-slip normal faults parallel to the rift. The 31 axis is then hor-
izontal, perpendicular to the normal faults, and parallel to the
direction of divergence. When the relative motion is oblique
to the rift trend, i.e., in transtensional settings, the rift formation
involves a combination of pure shear extension and simple
shear. The deformation is accommodated by a combination of
normal faults parallel and oblique to the rift trend, and also by
strike-slip faults when the rifting obliquity increases. In this
case, 31 is approximately bisector of the angle between the
displacement vector and the normal to the rift (Withjack and
Jamison, 1986). The analytical solution to the problem of ob-
lique rifting, based on the general theory of transpression-
transtension developed by Sanderson and Marchini (1984)

Fig. 1. Geometrical relationship between the main structural directions at ob-

lique rifts.
and Tikoff and Teyssier (1994), confirms that the infinitesimal
extension direction is exactly the bisector of the angle between
the displacement vector and the normal to the rift (see also
McCoss, 1986).

Tron and Brun (1991) and Clifton et al. (2000) showed with
laboratory experiments that the fault strike distribution in ob-
lique rifts depended on the rifting obliquity. Consequently,
a statistical analysis of fault strikes in natural rifts may provide
an accurate estimate of the direction of divergence. This rule
has been applied successfully to determine the direction of
spreading along two slow-spreading ridges, the Mohns Ridge
in the North Atlantic Ocean (Dauteuil and Brun, 1993) and
the West Sheba Ridge in the Gulf of Aden (Dauteuil et al.,
2001), and the kinematic evolution of the Okinawa Trough
(Sibuet et al., 1995; Fournier et al., 2001a). Taylor et al.
(1994) and Tuckwell et al. (1996) examined the relationship
between the orientation of extensional fractures and the plate
motion vector at oblique spreading ridges and at so-called
‘‘extensional transform zones’’ (ETZ) characterized by an
obliquity between 45� and 75� (Taylor et al., 1994). They ob-
served that, at oblique spreading ridges, most normal faults
form at an angle with the ridge axis approximately equal to
the half of the plate motion obliquity, a result in line with
the experiments of Withjack and Jamison (1986), Tron and
Brun (1991), and Clifton et al. (2000).

However, with the exception of the work of Withjack and
Jamison (1986), these studies mainly focused on fault strikes
and did not regard the implications in terms of strain. In exper-
imental models as well as in the offshore domain, statistical
analysis of fault distributions does not allow estimation of
strain axes directions because slip vectors on fault planes can-
not be directly observed. In seismically active rifts, however,
the direction of maximum stretching can be inferred from
earthquake focal mechanisms. In the following, we investigate
the relationship between spreading and stretching directions as
determined from earthquake focal mechanisms at six oblique
spreading ridges.

2. Stretching direction determined from
earthquake focal mechanisms

In a homogeneous and isotropic material, rupture occurs on
two conjugate planes of maximum shear stress oriented with
respect to the maximum and minimum stresses s1 and s3. Be-
cause most earthquakes occur on pre-existing faults, earth-
quakes do not provide direct evidence for the orientation of
principal stresses, but instead provide evidence for the orienta-
tion of the strain axes (e.g., Twiss and Unruh, 1998). The com-
pression (P) and tension (T) axes of the double-couple focal
mechanism solutions are defined kinematically by fault slip
and correspond to the principal strain axes 33 and 31, respec-
tively. They represent the principal axes of the incremental
(or instantaneous) strain tensor for fault movements (e.g.,
McKenzie, 1969; Marrett and Allmendinger, 1990). Thus, in
extensional settings, T-axes of normal faulting earthquakes
can be used to determine the direction of stretching. This
method is applicable in regions of homogeneous deformation,
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i.e. when focal mechanisms are all of the same type, which is
the case at spreading centres of oceanic ridges.

3. Stretching vs spreading directions at
oblique spreading ridges

In the oceanic domain, rifting occurs at the crest of slow-
spreading mid-oceanic ridges characterised by high seismic
activity. Fast spreading centres are devoid of an axial rift and
seismicity, and are characterized by orthogonal spreading ex-
cept in a few back-arc basins where ETZ have been described,
such as the Manus and Lau basins (Taylor et al., 1994). At fast
spreading ridges, the obliquity between the spreading direction
and the plate boundary is taken up by transform faults (e.g.,
Pacific-Antarctic Ridge). The main oblique-spreading ridges
on Earth are the Southwest Indian Ridge (SWIR) in the Indian
Ocean (Fig. 2; Ewing and Heezen, 1960; Fisher and Sclater,
1983; Patriat, 1987), the Sheba Ridge in the Gulf of Aden
(Fig. 3; Matthews et al., 1967; Laughton et al., 1970), and
the Reykjanes (Fig. 4; Vine, 1966), Mohns (Fig. 5; Talwani
and Eldholm, 1977), and Knipovich (Fig. 5; Vogt et al.,
1979; Okino et al., 2002) ridges in the North Atlantic Ocean.
These five ridges have been surveyed together with the Carls-
berg Ridge in the northwest Indian Ocean (Fig. 3; Schmidt,
1932; Vine and Matthews, 1963), which is generally consid-
ered as a type example of orthogonal-spreading ridge.

We have selected in the Harvard centroid moment tensor
(CMT) catalog all focal mechanisms of earthquakes shallower
than 50 km which occurred between 1976 and 2000 (25 years)
along these six ridges (Dziewonski et al., 1981). 271 mecha-
nisms of extensional or strike-slip type have been obtained
and are plotted in Figs. 2e5. For each ridge or ridge segment,
we determined its mean trend, the mean spreading direction,
and the mean stretching direction (Table 1). If necessary, the
ridges have been divided in roughly rectilinear segments.
For example, the SWIR has been divided into two parts: the
northeastern part strikes N54�E on average and the southwest-
ern part N105�E (Fig. 2). The ridge mean trend has been
directly measured on bathymetric and seismic maps. The
mean spreading direction corresponds to the average of the
spreading directions calculated at the ridge segment extre-
mities from the NUVEL-1A plate motion model (DeMets
Fig. 2. Bathymetric map (Sandwell and Smith, 1997), shallow seismicity between 1964 and 1995 (focal depth <50 km; magnitude >2; Engdahl et al., 1998), and

all available earthquake focal mechanisms (Harvard CMT for the period 1976e2000; Dziewonski et al., 1981) for the Southwest Indian Ridge (SWIR). Inserted

stereoplots are equal-area projections of the P and T axes of the extensional focal mechanisms and the mean direction of extension (31). The SWIR has been divided

into two parts with different trends: the northeastern part between the Rodrigues triple junction and the Prince Edward-Marion-Andrew Bain fracture zone

(PEMABFZ; Grindlay et al., 1998) trends N054�E � 2�, and the southwestern part between PEMABFZ and 53�S, 14�E trends N105�E � 2�. Bathymetric contour

interval is 1000 m. Strike-slip focal mechanisms along fracture zones show the consistency between slip vector azimuths and directions of relative motion (solid

arrows) calculated from plate motion models.
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Fig. 3. Same legend as Fig. 2 for the Sheba and Carlsberg ridges. OTF is Owen transform faults. Bathymetric contour interval is 500 m.
et al., 1990, 1994), except for Sheba and Carlsberg ridges for
which we used Fournier et al. (2001b) solution (Table 1). The
mean stretching direction is computed from the normal fault-
ing solutions (inserts in Figs. 2e5). From these data, the
spreading and stretching obliquities have been calculated for
each ridge (Table 1). Strike-slip focal mechanisms along trans-
form faults are also plotted in Figs. 2e5 to show the consis-
tency between slip vectors of strike-slip mechanisms and
spreading directions provided by plate motion models.

The stretching obliquity (Sobl) is plotted against spreading
(or rifting) obliquity (Robl) for the selected ridges in Fig. 6.
Spreading obliquities greater than 45� are never observed along
slow-spreading ridges. The points plot along the Sobl ¼ Robl/2
line for spreading obliquities less than 30� (Carlsberg, south-
western SWIR, Reykjanes, and Knipovich ridges), and slightly
depart from this line for obliquities between 30� and 45�

(Mohns, northeastern SWIR, and Sheba ridges).

4. Analytical model of oblique rifting

A horizontal plane-strain model of oblique rifting is pre-
sented in Fig. 7A. A unit length of lithosphere (initial rift) is
obliquely extended to a length b measured perpendicularly
to the rift axis. b thus defines a stretching factor corresponding
to the ratio of the final versus initial length (e.g., McKenzie,
1978). The stretching obliquity, defined as the angle between
the normal to the rift trend and greatest principal strain axis
of the strain ellipse (31), is calculated as a function of the rift-
ing obliquity and b.

The finite strain ellipse is calculated from continuum me-
chanics by decomposing the deformation matrix (deformation
gradient tensor) in finite strain (shape and orientation of the
strain ellipse in 2D) and finite rotation of the principal strain
axes (e.g., Elliott, 1972; Jaeger and Cook, 1979; McKenzie
and Jackson, 1983; Fournier et al., 2004b). The eigenvalues
and eigenvectors of the finite strain matrix provide the length
and orientation of the principal axes of the finite strain ellipse.
Exactly the same result is obtained by factorization of the de-
formation matrix into pure shear and simple shear components
(e.g., Sanderson and Marchini, 1984; Tikoff and Fossen, 1993;
Fossen and Tikoff, 1993; Tikoff and Teyssier, 1994; Krantz,
1995; Fossen and Tikoff, 1998).

The strain ellipse resulting from oblique rifting is shown as
a function of the rifting obliquity for various values of stretch-
ing factor b in Fig. 7B. For a given rifting obliquity, the princi-
pal strain axes progressively rotate as b increases. For a rifting
obliquity of 45�, the stretching obliquity increases from 24� for
b ¼ 1.1 to 36� for b ¼ 3. Furthermore, for a given b, the
stretching obliquity increases as the rifting obliquity increases.
For example, for b ¼ 2, the stretching obliquity increases to
10� to 20�, 32�, 45�, and 63� for rifting obliquity of 15� to
30�, 45�, 60�, and 75�, respectively.

In Fig. 7C, the stretching obliquity is plotted against rifting
obliquity for various values of b. When b is small (b < 1.1),
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Fig. 4. Same legend as Fig. 2 for the Reykjanes Ridge. Between 55.5�N,

35.5�W and 63.5�N, 24�W, the ridge strikes N037�E � 3�. Bathymetric con-

tour interval is 500 m.
the stretching obliquity is equal to the half of the rifting obliq-
uity (Sobl ¼ Robl/2). With increasing strain (b > 5), the stretch-
ing obliquity becomes almost equal to the rifting obliquity
(Sobl ¼ Robl).

Fig. 5. Same legend as Fig. 2 for the Mohns and Knipovich ridges (location in

Fig. 4). The Mohns Ridge strikes N063�E � 2� on average between 71�N,

7.5�W and 73.5�N, 8�E. The mean trend of the Knipovich Ridge between

73.7�N, 9�E and 78�N, 8�E is N178�E � 2�. Bathymetric contour interval is

200 m.
Table 1

Mean trend, azimuth of spreading, spreading obliquity, and principal strain 31 obliquity for oblique spreading ridges

Ridge Ridge

mean

trend (�E)

Ridge extremities Mean azimuth

of spreading (�E)

Mean T-axis

Strike, Dip deg

Spreading

obliquity deg

Principal strain

31 obliquity deg

Labelsb

Latitude (�N) Longitude (�E) Azimuth of

spreadinga

(�E)

Aden e Sheba N077�E � 3� 12 46 33 028 � 5 011,1 41 � 8 24 � 8 SHE

14.5 56 23 (n ¼ 14)

Carlsberg N135�E � 2� 10 57 31 033 � 2 219,0 12 � 4 6 � 7 CAR

4 63 35 (n ¼ 18)

SWIR NE N054�E � 2� �45 35 15 006 � 9 353,3 42 � 11 29 � 7 SWN

�26 69 177 (n ¼ 59)

SWIR SW N105�E � 2� �52 14 34 028 � 6 202,4 13 � 8 7 � 7 SWS

�53 28 22 (n ¼ 21)

Reykjanes N037�E � 3� 55.5 �35.5 95 098 � 3 294,2 29 � 6 13 � 8 REY

63.5 �24 102 (n ¼ 26)

Mohn N063�E � 2� 71 �7.5 113 119 � 6 131,4 34 � 8 22 � 7 MOH

73.5 8 125 (n ¼ 12)

Knipovitch N178�E � 2� 73.7 9 126 127 � 1 104,4 29 � 3 16 � 7 KNI

78 8 128 (n ¼ 7)

n is the number of extensional earthquake focal mechanisms used to determined the mean T-axes azimuth.
a Azimuths of spreading after DeMets et al. (1990), except for SHE and CAR after Fournier et al. (2001b).
b Labels are for data plotted in Fig. 5.
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5. Discussion

These predictions can be compared with the results obtained
for the selected oblique-spreading ridges (Fig. 6). For most
ridges, the 31 direction ranges along the Sobl ¼ Robl/2 line,
which corresponds to a low amount of extension in the model.
A simple interpretation is that rocks of the Earth’s upper crust
undergo small strains of a few per cent before brittle failure oc-
curs and relieves the accumulated strain. The principal strain
directions deduced from earthquake focal mechanisms thus
represent the infinitesimal (or instantaneous) strain ellipsoid.

Our results can also be compared with those of Taylor et al.
(1994) and Tuckwell et al. (1996) for the Reykjanes, Mohns,
Southwest Indian (NE), and Sheba ridges, provided one con-
verts their a and 4 angles into rifting and stretching obliquities:

Robl ¼ 90� a

Sobl ¼ 4� a

In contrast with us, Taylor et al. (1994) and Tuckwell et al.
(1996) defined the stretching direction as the perpendicular
to the mean trend of normal faults in extension zones.

We find a very good agreement for the Reykjanes Ridge,
where our estimates of spreading and stretching obliquities dif-
fer only by 1� and 4�, respectively, which is smaller than the un-
certainties. For the Mohns Ridge, our results compare well with
those of Taylor et al. (1994) but slightly differ from Tuckwell
et al. (1996) estimates of spreading obliquity (34 � 8� vs
40 � 6�), mainly because we (and Taylor et al., 1994) use a dif-
ferent azimuth of spreading (N119�E vs N110�E). Despite this,

Fig. 6. Stretching obliquity Sobl (maximum principal strain 31) as a function of

spreading obliquity Robl in degrees for seven oblique-spreading ridges. Data

sources and abbreviations are given in Table 1. See text for additional expla-

nation. Error bars for spreading obliquity represent the sum of the uncertainties

in the measurement of the ridge mean trend and in the azimuth of spreading

calculated along the ridge. Error bars for stretching obliquity represent the

standard deviation of the T-axes azimuth.
Fig. 7. A. Plane-strain analytical model of oblique rifting. See text for addi-

tional explanation. B. Strain ellipse for various stretching factors and rifting

obliquities. C. Stretching obliquity Sobl as a function of rifting obliquity Robl

in degrees. The curves are calculated from the analytical model and the

straight lines correspond to Sobl ¼ Robl and Sobl ¼ Robl/2.
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we find no large discrepancies between our estimates of stretch-
ing obliquity and theirs. Much larger differences are found for
the Southwest Indian and Sheba ridges: for the former, whereas
Taylor et al. (1994) and Tuckwell et al. (1996) give comparable
values of 14� and 23e27� for stretching and spreading obliqui-
ties, we find 29 � 7� and 42 � 11�, respectively. These differ-
ences are entirely attributable to different estimates of ridge
trend and spreading directions, due to the fact that Taylor
et al. (1994) and Tuckwell et al. (1996) took into account
only a small part of the SWIR located near the Rodrigues triple
junction (26�N; Mitchell, 1991), whereas we have taken into
account all the northeastern part of the SWIR over several thou-
sands kilometres (Fig. 2). However, here again, the determina-
tion of stretching directions from earthquake focal mechanisms
gives results comparable to the analysis of normal fault trends.
Concerning the Gulf of Aden (Sheba Ridge), a difference of up
to 5e10� exists between our values and those of Taylor et al.
(1994) and Tuckwell et al. (1996). Once again, these differences
come from the selection of different study areas. The results of
Taylor et al. (1994) and Tuckwell et al. (1996) concern the west-
ernmost part of the Sheba Ridge near the Gulf of Tadjura (45�E;
Tamsett and Searle, 1988), whereas our results encompass the
entire ridge from 46�E to 56�E (Fig. 3; Table 1). Hence, the
differences between our results and those of Taylor et al.
(1994) and Tuckwell et al. (1996) come from different scales
of study. Studying normal fault strikes at ridge axes requires de-
tailed mapping of fault fabrics. Working with focal mechanisms
from the world seismicity catalogs allows surveying of larger
areas.

In general, the results of Tuckwell et al. (1996) show that
most values of stretching vs rifting obliquities range along the
Sobl ¼ Robl/2 line, like in the present study. Surprisingly, the di-
rection of 31 deduced from infinitesimal strain (earthquakes)
does not differ from the perpendicular to the normal faults,
which are markers of finite strain and can have accommodated
a significant amount of deformation. This result suggests that
normal faults initially form perpendicular to the direction of
31 of the infinitesimal strain ellipsoid, keep this orientation dur-
ing ongoing extension, and do not significantly rotate as the
strain increases. As oblique slip (characterized by oblique focal
mechanisms) is seldom observed, this implies that normal faults
at ridge axes only accommodate a small amount of deformation
during the time when they are located in the seismically active
part of the rift (about 2 Ma for a ridge with a half-spreading rate
of 5 mm/yr and a 20 km large axial rift).

6. Conclusion

Plate-motion models such as RM2 and NUVEL-1 (Minster
and Jordan, 1978; DeMets et al., 1990) did not account for slip
vectors of extensional focal mechanisms along oceanic ridges.
The first reason was of course that, for extensional mecha-
nisms, it is not possible to determine which of the two nodal
planes is the fault plane and which is the actual slip vector.
The second reason was that at oblique-spreading ridges, slip
vectors are not parallel but oblique to the plate relative motion.
Here, we demonstrate that, at slow-spreading oblique ridges,
the maximum strain axis determined from earthquake focal
mechanisms trends halfway between the direction of spreading
and the normal to the ridge. Hence, the kinematics of oblique
ridges and rifts can possibly be determined from a set of ex-
tensional focal mechanisms, without assumption on the fault
plane and the slip vector. This result could be useful in conti-
nental rifts where transform faults are not developed and plate
kinematics difficult to assess. The comparison with an ana-
lytical model of oblique rifting shows that these features
correspond to small deformations at ridge axes, which is con-
sistent with the fact that earthquakes represent infinitesimal
strains. Furthermore, the analysis of normal faults directions
(Taylor et al., 1994; Tuckwell et al., 1996) yields similar con-
clusions, though normal fault heaves represent thousands of co-
seismic slips. Yet, compared to the rift width (w10 to 20 km),
the cumulated stretching factor on each fault must remain low.
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