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1 INTRODUCTION

Strike-slip plate boundaries display a large variety of geological structures along their
strike, especially in areas where the layout of the displacement zone is discontinuous or
curved (Mann, 2007). These step-over areas favor the formation of releasing or restraining
bends, according to the configuration of adjacent strike-slip fault segments and the local stress
field (Sylvester, 1988). Detailed tectonic and stratigraphic investigations have revealed that
strike-slip boundaries experience dramatic episodes of structural reorganization during their
lifetime, marked by the formation of new structures and the abandonment of older ones (ten
Brink and Ben-Avraham, 1989; Wakabayashi, 2007; Brothers et al., 2009; Schattner, 2010; ten
Brink and Flores, 2012; Le Pichon et al., 2001, 2013). Models of structural evolution have pro-
posed that continental strike-slip boundaries initiate as diffuse, en-�echelon fault systems and
become narrower with increasing maturity (Tchalenko, 1970; Wesnousky, 2005; Dooley and
Schreurs, 2012; LePichon et al., 2016). This pattern of structural evolution is modulated by the
layered rheology of the continental lithosphere (LePourhiet et al., 2014).

The structural evolution of oceanic strike-slip faults (with seismicity identified along their
entire length) has been investigated only for a few cases, including the MacQuarie Fault
(Australia-Pacific boundary; Massel et al., 2000; Meckel et al., 2005) or the Azores-Gibraltar
transform fault (Nubia-Eurasia boundary; Zitellini et al., 2009; Rosas et al., 2014; Miranda
et al., 2014). Here we focus on the oceanic India-Arabia strike-slip plate boundary, which ini-
tiated �90Ma when India separated from Madagascar (Bernard and Munschy, 2000) and
started its motion toward Eurasia. The India-Arabia plate boundary experienced several epi-
sodes of migrations in response to India-Eurasia or Arabia-Eurasia collision (Rodriguez et al.,
2014a,b, 2016). Multibeam mapping of the current India-Arabia plate boundary (Fig. 1),
referred to as theOwen fracture zone (OFZ) in theArabianSea, revealeddextralmorphological
offsets of the Owen Ridge on the order of 10–12km (Fournier et al., 2008a,b, 2011)—the Owen
Ridge being a series of bathymetric highs uplifted 8.7Ma ago (Rodriguez et al., 2014a, b, 2018).
Considering steady the current right-lateralmotionof 3�1mmyr�1 (DeMets et al., 2010), these
offsets indicate a recent reorganization of the OFZ, younger than the Late Miocene.

Usingmultibeam and seismic data, tied to nearby ODP-DSDP sites, we performed detailed
structural and stratigraphic studies to investigate the age of formation of eachmajor structure
(mainly pull-apart basins) observed along the OFZ in order to determine its age of formation.
The results show that the present-day expression of the entire, 800-km-long OFZ formed at
2.4Ma, from the Aden-Owen-Carlsberg triple junction to theMakran subduction zone (Fig. 1)
and involved the opening of conspicuous pull-apart basins (from south to north: the
Beautemps-Beaupr�e Basin, Fig. 2; the 20°N Basin, Fig. 3; the Dalrymple Trough, Fig. 4).

2 THE SEDIMENTARY RECORD OF STRIKE-SLIP TECTONICS ALONG
THE OWEN FRACTURE ZONE

2.1 The Indus Turbiditic Channels

The OFZ crosses the distal Indus turbidite fan, which is fed from the east by the Indus can-
yon cutting through the NW Indian margin (von Rad and Tahir, 1997; Rodriguez et al., 2011,
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FIG. 1 Multibeam bathymetric map of the Owen fracture zone. Inset shows the plate tectonic context in the north-
western Indian Ocean. (A) and (B) are enlargements of two areas where the lateral offset has been measured (respec-
tively, 10 and 12km).
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FIG. 2 (A) Multibeam bathymetric map of the Beautemps-Beaupr�e Basin, (B) North-South seismic profile across
the Beautemps-Beaupr�e Basin, and (C) its interpretation (in blue, the post-2.4Ma infill of the basin, in black the 8.8Ma
discordance that marks the uplift of the Owen Ridge).
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FIG. 3 (A) Multibeam bathymetric map of the 20°NBasin, OFZ: Owen Fracture Zone, SB1, SB2, SB3: subbasins, (B) West-East seismic profile across the
subbasin SB3 of the 20°N Basin, and (C) its interpretation (in blue, the post-2.4Ma infill of the basin).
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FIG. 4 (A)Multibeam bathymetricmap of the Dalrymple Trough (inset is a bird’s eye view from the southwest), (B)West-East seismic profile across the
southern part of the Dalrymple Trough, and (C) its interpretation. The pink reflector dated at 2.4Ma marks the beginning of the opening of the basin. The
post-2.4Ma infill of the basin is shown in blue.
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2013, 2014a, b; Bourget et al., 2013). Turbiditic channels are observed on both sides of the OFZ
(Figs. 3 and 4). In terms of relative chronology, the turbiditic channels observed west of the
OFZ (in the Owen Basin) predate its formation and indicate a period of limited tectonic
activity, or a period when sedimentation rates were too high to record tectonics. East of
the OFZ, the turbiditic channels trapped or deviated by strike-slip structures postdate the
formation of the OFZ. Dating the different turbiditic systems provides good age brackets
for the formation of the OFZ. The age of a turbiditic channel is estimated from the age of
the first pelagic layer that covers it.

2.2 Fault-Controlled Contourite Drifts

Bottom currents influence the geometry of deep-sea sedimentary deposits and build con-
spicuous sedimentary formations referred to as contourite drifts (Rebesco et al., 2014). In the
vicinity of the OFZ, several fault-controlled contourite drifts are observed within the pelagic
blanket lying over the turbiditic channels (Figs. 3 and 4). The opening of pull-apart basins
along the OFZ induced local perturbations of bottom current. The base of a fault-controlled
drift indicates the minimum age of formation of the fault.

2.3 Angular Unconformities

Vertical motion of the seafloor (uplift or subsidence) related to faults results in major
angular unconformities within the Indus fan, sometimes outlined by conspicuous fanning
configurations recording the growth of the structure. Within the fanning configurations,
numerous unconformities reflect the control of sea-level variations at the 105years time-scale
over the Indus fan sedimentation (Bourget et al., 2013).

3 AGE OF STRUCTURES ALONG THE OWEN FRACTURE ZONE

3.1 The Beautemps-Beaupr�e Pull-Apart Basin

The Beautemps-Beaupr�e Basin is a 120-km-long, 50-km-wide rhomboidal pull-apart basin
located at the southern termination of the OFZ (Fig. 2; Fournier et al., 2008a,b). The
Beautemps-Beaupr�e Basin is almost entirely filled in by Indus turbidites. The basin is
bounded to the south by the Beautemps-Beaupr�e Ridge (Rodriguez et al., 2018), which cor-
responds to a tilted section of Indus turbidites (Fig. 2). Numerous angular unconformities are
identified at the edges of the basin (Fig. 2), most of them being related to interruptions of
Indus sedimentation related to sea-level variations (Bourget et al., 2013). The onset of the up-
lift of the Beautemps-Beaupr�e Ridge is recorded by a conspicuous angular unconformity and
the base of the fanning configuration of a sequence of Indus sediments (Fig. 2; Rodriguez
et al., 2018). This unconformity can be tracked within the Beautemps-Beaupr�e Basin, where
it coincides with the onset of lateral variations in thickness of turbidites, which marks the
onset of seafloor subsidence there. Since its uplift above the level of turbidites deposition,
the Beautemps-Beaupr�e Ridge is blanketed by pelagic sediments that can be correlated with
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pelagic sediments on top of the nearby Owen Ridge (Fig. 2), where ODP sites provide strat-
igraphic constraints (Discoaster pentaradius; Shipboard Scientific Party, 1989). This unconfor-
mity is dated at 2.4Ma (Rodriguez et al., 2014b, 2018).

3.2 The 20°N Pull-Apart Basin

The 20°N Basin, named after its latitude, is an asymmetric, 90-km-long, 12-km-wide pull-
apart basin (Fig. 3; Fournier et al., 2011). The OFZ constitutes the western flank of the 20°N
Basin, while imbricated systems of arcuate normal faults dissect its eastern flank (Fig. 3). The
20°N Basin is divided into three subbasins by the transverse faults (Fig. 3). Fossil turbidite
channels are identified west of the basin, whereas the currently active channel is captured
on the eastern side of the basin (Rodriguez et al., 2011; Bourget et al., 2013). The most recent
fossil turbidite channel to the west is dated at 3.4�1.2Ma (Rodriguez et al., 2013), which gives
the maximal age of the opening of the basin (Fig. 3). A fault-controlled contourite drift, with a
typical sigmoid geometry, is also identified on the top of themaster fault (Fig. 3). The opening
of the basinmay have disturbed the course of the bottom current and triggered the building of
the drift. The reflector marking the base of the drift can be correlated within the pelagic cover
as far as the ODP sites located at the top of the Owen Ridge. The age of this reflector is 2.4Ma
(Rodriguez et al., 2013, 2014b).

3.3 The Dalrymple Trough

The Dalrymple Trough marks the northern termination of the OFZ (Edwards et al., 2000;
Ellouz Zimmermann et al., 2007). The southern segment of the Dalrymple Trough is a 150-
km-long, 30-km-wide horsetail termination basin (Fig. 4), with numerous oblique splays
connecting the OFZ (Fournier et al., 2011; Rodriguez et al., 2014b). The Dalrymple Trough
is flanked to the east by the Murray Ridge. Indus turbidite channels dated at 3.7�1Ma to
the west of the Dalrymple Trough predate its opening (Fig. 4). In contrast to the 20°N and
Beautemps-Beaupr�e basins, the Dalrymple Trough has been isolated from the Indus infill
subsequently to the uplift of the Murray Ridge. On transverse seismic profile (Fig. 4), the core
of the Dalrymple Trough is expressed as a syncline. The last deformed layer can be fairly
correlated with the Indus sequence at the border of the basin (Fig. 4). It coincides with the
reflector marking a major angular unconformity in front of the Makran accretionary wedge
(M-unconformity; Gaedicke et al., 2002; Ellouz Zimmermann et al., 2007). Moreover, this re-
flector marks the base of a fault-controlled contourite drift close to the OFZ at the entrance of
the trough (Rodriguez et al., 2014b). Here again, this reflector within well-bedded pelagic
layers can be correlated from line to line to the location of the ODP sites. It is also dated at
2.4Ma. However, the age of the northern segment of the Dalrymple Trough, connecting
the Ornach Fault in Pakistan, remains to be constrained.

4 DISCUSSION AND PERSPECTIVES

Detailed tectono-stratigraphic studies indicate the present-day configuration of the
entire 800-km-long OFZ formed at 2.4Ma, expressed by the coeval opening of the
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Beautemps-Beaupr�e basin to the south, the 20°N basin, and the Dalrymple Trough to the
north. Considering the 10–12 km-morphological offsets were formed during the last 2.4Ma
implies a dextral rate of India-Arabia relative motion at �4.2–5mmyr�1.The India-Arabia
boundary is located in this area since at least the Early Miocene and the first stages of seafloor
accretion at the Sheba Ridge 20Ma ago (Fournier et al., 2010). The India-Arabia plate bound-
ary has accommodated since then about 80-km of dextral relative motion (Chamot-Rooke and
Fournier, 2009). When the OFZ formed at 2.4Ma, the India-Arabia boundary was therefore
already a mature system. The timing of the formation of the OFZ at 2.4Ma does not corre-
spond to a clearly identified kinematic change (DeMets et al., 2017), making the geodynamic
driver of its formation unknown. Either the corresponding kinematic change has not been
detected so far, or there is no kinematic change related to the onset of the OFZ. The formation
of the OFZmay simply be the last step of a series of transient adjustments of the India-Arabia
plate boundary since the last major kinematic change identified in the Indian Ocean between
6 and 8Ma (DeMets and Merkouriev, 2016; DeMets et al., 2017). It is also possible that the
2.4Ma episode of intensification of the Indian Monsoon (An et al., 2001) might have played
a role in the evolution of the strike-slip system through its effect on the Indus sedimentation
rates (increase up to 500m/Ma at 2.4Ma; Shipboard Scientific Party, 1989).
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